

Chemical Anchor EV2

Vinylester Styrene Free Low Odour Resin is a high performance, rapid curing two part chemical anchoring system. Applied through attached mixing nozzle directly into fixing hole. Product can be extruded with use of standard extruder for silicones. It is designed as a fast curing, high strength resin fixing anchor for very high loads and critical fixings especially in corrosive environments or damp conditions.

APPLICATIONS

Non-cracked and cracked concrete
Various solid substrates
Balcony
Pool ladder
Rebar and threaded installations
Heavy poles, lanterns

BENEFITS

Suitable for use in hollow wall, masonry
& concrete
Medium and heavy duty load applications
Can be used in dry and wet conditions
Can be used under water
Suitable for critical applications
Chemical resistant
Fire resistant
Styrene free with low odour
Low shrinkage enables large diameter
installation

APPLICATION CONDITIONS

Application temperature [°C]	-10* ÷ +35
*Cartridge temperature must be at least 20°C	

DIRECTIONS FOR USE

1. SOLID SUBSTRATE

1. Bore hole drilling

Drill hole in the substrate to the required embedment depth using the appropriately sized carbide drill bit.

2019.07.03

D-142

2. Bore hole cleaning

a) Manual air cleaning (MAC) for all bore hole diameters do \leq 24mm and bore hole depth ho \leq 10d.

The manual pump shall be used for blowing out bore holes up to diameters $d_o \le 24$ mm and embedment depths up to $h_{ef} \le 10d$. Blow out at least 4 times from the back of the bore hole, using an extension if needed.

Brush 4 times with the specified brush size (see Table 1) by inserting the **Selena** steel brush to the back of the hole (if needed with an extension) in a twisting motion and removing it.

Blow out again with manual pump at least 4 times.

b) Compressed air cleaning (CAC) for all bore hole diameters do and all bore hole depths

Blow 2 times from the back of the hole (if needed with a nozzle extension) over the whole length with oil-free compressed air (min. 6 bar at $6m^3/h$).

Brush 2 times with the specified brush size (see Table 1) by inserting the **Selena** steel brush to the back of the hole (if needed with an extension) in a twisting motion and removing it.

Blow out again with compressed air at least 2 times.

3. Installation

Remove the threaded cap from the cartridge.

Tightly attach the standard or mixing nozzle. Do not modify the mixer in any way. Made sure the mixing element is inside the mixer. Use only the supplied mixer.

Insert the cartridge into the Selena dispenser gun.

Discard the initial trigger pulls of adhesive. Depending on the size of the cartridge, an initial amount of adhesive mix must be discarded. Discard quantities are:

- 5cm for between 150ml, 300ml & 400ml Foil Pack
- 10cm for all other cartridges

Inject the adhesive starting at the back of the hole, slowly withdrawing the mixer with each trigger pull.

Fill holes approximately 2/3 full, to ensure that the annular gap between the anchor and the concrete is completely filled with adhesive along the embedment depth.

Before use, verify that the threaded rod is dry and free of contaminants.

Install the threaded rod to the required embedment depth during the open gel time t_{gel} has elapsed. The working time t_{gel} is given in Table 2.

The anchor can be loaded after the required curing time $t_{\mbox{\scriptsize cure}}$ (see Table 2).

2019.07.03

TECHNICAL DATA

Table 1. Bore hole cleaning method with steel brush

Throadod		Nominal	Stool	Cleaning methods		
rod and rebar	Size	drill bit diameter d₀ [mm]	brush [mm]	Manual cleaning (MAC)	Compressed air cleaning (CAC)	
	M8	10	12	Yes hef ≤ 80 mm		
	M10	12	14	Yes hef ≤ 100mm		
Stude	M12	14	16	Yes hef ≤ 120mm	Vaa	
Siuds	M16	18	20	Yes hef ≤ 160mm	165	
	M20	24	26	Yes hef ≤ 200mm		
	M24	28	30	Yes hef ≤ 240mm		
	Ø8	12	14	Yes hef ≤ 80 mm		
Rebar	Ø10	14	16	Yes hef ≤ 100mm		
	Ø12	16	18	Yes hef ≤ 120mm		
	ebar Ø14	18	20	Yes hef ≤ 140mm	Yes	
	Ø16	20	22	Yes hef ≤ 160mm		
	Ø20	25	28	Yes hef ≤ 200mm		
	Ø25	32	34	Yes hef ≤ 240mm		

Table 2. Curing conditions

Minimum base material temperature	Gel time (working time) In dry/wet concrete	Cure time
-10°C to -5°C	125 min	8 hours
-5°C to 0°C	80 min	160 min
0°C to 5°C	25 min	90 min
5°C to 10°C	17 min	70 min
10°C to 20°C	12 min	65 min
20°C to 30°C	6 min	60 min
20°C to 30°C	3 min	45 min

The temperature of the bond material must be $\geq 20^{\circ}$ C.

Table 3. Consumption of resin

Size	Hole diameter (mm)	Hole depth (mm)	Yield (300ml)*	Yield (380ml)*
M8	10	80	<71	<90
M10	12	90	<44	<56
M12	14	110	<26	<33
M16	18	125	<14	<18

*Hole filling: 2/3 full

Table 4. Typical tensile (kN) performance data at standard embedment depth

	Concrete, fck, cube = 25N/mm ² (C20/25) 5.8 Grade Steel Studding						
Size	Characteristic	Recommended	Spacing	Hole ø	Hole ø	Setting	
	Resistance (kN)	Load (kN)	Spacing	Drill	In Fixing	Depth	

2019.07.03

D-142

4/5

	Tension (Nrk)	Shear (Vrk)	Tension (Nrec)	Shear (Nrec)	(mm)	(mm)	(mm)	(mm)
M8	19.0	9.0	9.1	5.1	160	10	9	80
M10	30.2	15.0	14.4	8.6	200	12	11	90
M12	43.8	21.0	20.9	12.0	240	14	13	110
M16	67.8	39.0	32.3	22.3	320	18	17	125
M20	104.6	61.0	49.9	34.9	400	24	22	170
M24	133.0	88.0	63.3	50.3	480	28	26	210

Detailed technical information can be found in the European Technical Approval No. ETA-12/0123.

NORMS / APPROVALS / CERTIFICATES

1. European Technical Approval, ETA-12/0123, Bonded injection type anchor for use in non-cracked concrete: sizes M8 to M24, rebar 8 to 25mm.

TRANSPORT / STORAGE

The chemical anchors should be stored between +5°C and +25°C. The shelf life of the product is 18 months from the manufacturer date. Cartridge can be open up to 3 months. During this time the chemical anchor can be used – you only have to change mixer before use.

Chemical anchors in cartridge are resistant to low temperatures. The minimum temperature of transportation is -40°C and the maximum time of transportation in temperatures below zero is 6 weeks. The product is resistant to 100 cycles of freezing / thawing out.

The information contained herein is offered in good faith based on Producer's research and is believed to be accurate. However, because conditions and methods of use of our products are beyond our control, this information shall not be used in substitution for customer's tests to ensure that Producer's products are fully satisfactory for your specific applications. Producer's sole warranty is that the product will meet its current sales specifications. Your exclusive remedy for breach of such warranty is limited to refund of purchase price or replacement of any product shown to be other than as warranted. Producer specifically disclaims any other expressed or implied warranty of fitness for a particular purpose or merchantability. Producer disclaims liability for any incidental or consequential damages. Suggestions of use shall not be taken as inducements to infringe any patent.

